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Abstract—Machine learning tools are become recently very
popular for solving real applications from many areas. Most of
the learning problems are formulated as optimization problems
with simple objective function but large number of constraints
of order the number of training data. When considering the dual
formulation, usually the objective function is difficult to minimize
but the constraints are simple. One relevant application that fits
into this pattern is the support vector machine (SVM). A popular
approach for solving the primal SVM problem is based on first
order methods due to their superior empirical performance.
When considering the dual SVM formulation, which has simple
constraints, coordinate descent schemes are typically the method
of choice in practice due to their cheap iteration. In this paper
we present a comparative study of several first order methods
for solving primal or dual SVM problems. Numerical evidence
on support vector machine classification for automatic detection
of driver fatigue supports the effectiveness of such first order
methods in real-world problems.

Index Terms—Support vector machine, primal and dual first
order methods, driver fatigue monitoring system.

I. INTRODUCTION

In machine learning applications the optimization algorithms
involve numerical computation of parameters for a system
designed to make decisions based on large amount of data [11],
[21]. In particular, one of the most successful formulation for
classification of data is the support vector machine (SVM).
In the primal formulation of the SVM problem we have a
simple objective function, e.g. a quadratic expression with
diagonal Hessian, but a large number of linear constraints,
equal the number of training data. When considering the
dual formulation, usually the objective function is difficult to
minimize, but the constraints are simple. The recent success
of certain first order optimization methods for SVM problems
has motivated increasingly great efforts into developments of
new numerical algorithms or into analyzing deeper the existing
ones [3], [5], [7]–[9].
Though interior point methods are typically superior in terms
of convergence speed and accuracy, the first order methods
are able to rapidly provide a suboptimal solution at low com-
putational costs per iteration, which is important in machine
learning applications [10]. In this paper we describe several
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first order methods for solving SVM problems, some of them
developed recently by the second author. The optimization
algorithms we analyze use first order information combined
with random choice of the sets or of the coordinates. More
precisely, a popular approach for solving the primal SVM
problem is based on first order methods, such as conditional
gradient [2], due to their superior empirical performance.
However, we show that instead of dealing with the whole set of
constraints at each iteration as conditional gradient does, it is
more computationally efficient to apply a stochastic gradient
variant that uses only one constraint randomly per iteration
[8]. When considering the dual SVM formulation, which has
simple constraints, we show that coordinate descent schemes
are typically the method of choice in practice compared to
full projected gradient method due to their cheap iteration [9].
We present a comparative study of these full or partial first
order methods for solving primal or dual SVM formulations,
accompanied by detailed derivations of their computational
complexity.
As application we consider driver fatigue detection using
computer vision and support vector machine techniques [17],
[18], [20]. Our methodology for fatigue detection is based
on Viola-Jones algorithm for face and eyes detection [12]
and on machine learning techniques (linear SVM classifier),
to classify the eyes of the driver as open or closed. For
training the classifier we use the primal and dual first order
methods discussed in this paper. Numerical evidence on SVM
classification for automatic detection of driver fatigue supports
the effectiveness of such first order methods in real problems.

II. PROBLEM FORMULATION

Let f : Rn → R be a convex differentiable function. Further,
let W ⊆ Rn be some non-empty closed convex set. Then,
we consider the following convex constrained optimization
problem:

f∗ = min
w∈W

f(w) (1)

Template (1) covers many applications in machine learning
(including SVM), statistics, signal processing, control, by
appropriately choosing the objective function and the con-
straints [1], [5], [6], [17], [21]. We assume that the objective
function f is simple, i.e. it is easy to minimize f or we
can easily have access to its gradients. On the other hand, in
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many application, including SVM classification, we encounter
complicated constraints, e.g. it is computationally prohibitive
to project onto the set W or W is described by a large number
of constraints. The most usual situation is when W = ∩mi=1Wi,
where each Wi is simple closed convex set but m is large.
By simple we mean that it is easy to construct a barrier
function for each Wi or the projection onto each set Wi is
easy. For example, in SVM the feasible set W can be written
as the intersection of m halfspaces W = {w : Hw ≤ h},
that is Wi = {w : Hiw ≤ hi}, where Hi is the ith row
of matrix H . Let us denote by W∗ the optimal set of this
problem and for any w we denote its projection onto W∗ by
w∗, denoted w∗ = ΠW∗(w). We also assume in the sequel
that we have access to the gradient of f , denoted ∇f , or to
its conjugate f∗(α) = maxw∈dom(f)[〈α,w〉 − f(w)], which
is a key assumption in primal or dual first order methods
to scale up the numerical algorithms. Based on the previous
assumptions we can also easily construct the dual of (1).
In particular, if we consider the conjugate of the indicator
function IW of the closed convex set W, so-called support
function suppW(α) := maxw∈W〈w, α〉, then we have:

IW(w) = max
α
〈w, α〉 − suppW(α).

Replacing this expression in the primal formulation, we obtain
the dual problem of (1):

f∗ = min
w
f(w) + IW(w)

= min
w

[f(w) + max
α
〈w, α〉 − suppW(α)]

= max
α

[−suppW(α) + min
w

(〈w, α〉+ f(w))]

= max
α
−suppW(α)− f∗(−α)

= −min
α
f∗(−α) + suppW(α). (2)

In the sequel, we analyze in details some primal and dual
formulations for SVM.

A. Support Vector Machine - Primal

The support vector machine (SVM) is a method that calculates
the separating bound that classifies two types of objects or
more. We consider the case of binary classification where
the goal is to separate into two classes the data thorough
a hyperplane, as in Fig. 1. Before formulating the primal
problem let us define the geometric margin of (w, b) for a
pair from the training set (x(i), y(i))mi=1 as:

γ(i) = y(i)

((
w

‖w‖

)T
x(i) − b

‖w‖

)
.

Through this notion we can measure the quality of the clas-
sifier prediction by finding the best bound that maximize the
geometric margin. This search is possible by formulating the
optimization problem:

min
w∈Rn,b∈R,ζ∈Rm

1

2
‖w‖2 +

C

2
‖ζ‖2 (3)

s.t : y(i)(wTx(i) − b) ≥ 1− ζi ∀i = 1 : m.

Fig. 1. A binary classification with the linear support vectors machine
classifier.

Clearly, this problem fits into the primal form (1) based on
the following identification:

w = (wT b ζT )T

W = ∩Mi=1Wi

(
:= {y(i)(wTx(i) − b) ≥ 1− ζi}

)
.

When the vector of variables ζ = 0, then the hyperplane
defined by wTx(i) + b separates exactly the data into two
classes. When ζ 6= 0, then the data are almost separately by
an hyperplane. Note that in SVM usually a formulation of the
following form is considered [11], [21]:

min
w∈Rn,b∈R,ζ∈Rm

1

2
‖w‖2 + C

m∑
i=1

ζi (4)

s.t: y(i)(wTx(i) − b) ≥ 1− ζi, ζi ≥ 0, ∀i = 1 : m.

In this paper we use the equivalent form (3) instead of
the classical formulation (4) since in this case we get less
constraints and the objective function is strongly convex in
the variables (w, ζ) and thus more adequate for first order
methods. In fact in order to get a strongly convex objective
function in the full variables w = (w, b, ζ) we may also
consider adding an l2 regularization for b as well in (3):

min
w∈Rn,b∈R,ζ∈Rm

1

2
‖w‖2 +

C

2
‖ζ‖2 +

C0

2
b2 (5)

s.l: y(i)(wTx(i) − b) ≥ 1− ζi ∀i = 1 : m,

where C0 is sufficiently small. Clearly, for C0 = 0 we recover
the original formulation (3) and for C0 small enough the
optimal solution of (5) is close to an optimal solution of (3).
Note that both primal SVM problems (3) and (5) have simple
objective functions (e.g. quadratic expression with diagonal
Hessian), but a large number of constraints (intersection of
half-spaces), thus difficult to project onto this set.

B. Support Vector Machine - Dual
The primal problem (3) can be also reformulated using the
dual settings as given in (2). In particular, one has e.g. the
following Lagrangian dual problem:

max
α≤0

min
w∈Rn,b∈R,ζ∈Rm

1

2
‖w‖2 +

C

2
‖ζ‖2+

+

m∑
i=1

αi[yi(w
Txi − b)− 1 + ζi].
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To find the dual form we resolve the unconstrained quadratic
minimization subproblem in w leading to:

w = −
m∑
i=1

αiyixi, ζ = −α
C
,

m∑
i=1

αiyi = 0.

Making the change of variable α→ −α we get:

w =

m∑
i=1

αiyixi, ζ =
α

C
,

m∑
i=1

αiyi = 0,

and the dual problem:

min
α∈Rm

1

2
‖
m∑
i=1

αiyixi‖2 +
1

2C
‖α‖2 −

m∑
i=1

αi

s.t. :

m∑
i=1

αiyi = 0, α ≥ 0.

(6)

Elaborating on the above expressions in (6) and denoting the
kernel matrix K whose entries are given by Kij = yiyjx

T
i xj

for all i, j=1:m, we get:

min
α∈Rm

φ(α)

(
:=

1

2
αT (K + 1/CIm)α−

m∑
i=1

αi

)

s.t. : α ∈ ∆ :=

{
m∑
i=1

αiyi = 0, α ≥ 0

}
.

(7)

We notice that the dual form (7) has simpler constraints than
the primal problem (3). In fact, we can project onto the simplex
∆ = {α : yTα = 0, α ≥ 0} in O(m logm) flops [4].
Moreover, once a dual solution is obtained we can easily
recover a primal solution. Indeed, since the complementarity
condition αi[yi(wTxi − b) − 1 + ζi] = 0 holds, then for any
αi > 0 we can recover b from yi(w

Txi − b) − 1 + ζi = 0.
Thus, a primal solution can be recovered as:

w =

m∑
i=1

αiyixi, ζ=
α

C
, b= wTxi − (1− ζi)/yi.

III. FIRST ORDER METHODS FOR SVM

In the following we describe several primal and dual first
order methods for solving SVM problems that use first order
information combined with random choice of sets or of
coordinates. We also provide detailed derivations of their
computational complexity on this specific application. From
our best knowledge this is the first comparative study of the
methods considered below for SVM.

A. Primal First Order Methods

Since primal SVM problem (3) has complicated linear con-
straints (intersection of many half-spaces) and since there are
efficient solvers for linear programs, one possible candidate
for solving (3) is the conditional gradient algorithm, see [2]
for a detailed description of this method:

Conditional Gradient

Given w0 ∈W, for k ≥ 0 do:
1. Compute the gradient ∇f(wk)
2. Solve the linear program:

sk = arg mins∈W〈∇f(wk), s〉
3. Compute the new iterate:

wk+1 = (1− γk)wk + γksk.

where the stepsize γk can be chosen using line search, con-
stant, or variable such as γk = 2/(k + 1). Its convergence
behavior is given in next theorem:

Theorem 3.1: [2] Let f be a convex function with Lipschitz
continuous gradient of constant Lf and W be a convex set
with finite diameter diamW = maxw1,w2∈W ‖w1 − w2‖ <∞.
Then, the iterates of conditional gradient with γk = 2/(k+ 1)
satisfy:

f(wk)− f∗ ≤ 2Lfdiam2
W

k + 2
.

In the particular case of SVM problem (3), since the objective
function is simple, we can compute immediately the gradient:

∇f(wk) = (wTk 0 CζTk )T

and the linear program we need to solve is:

sk = arg min
s=(w,b,ζ)

(wTk 0 CζTk )s

s.t. : y(i)(wTx(i) − b) ≥ 1− ζi ∀i = 1 : m.

However, since the feasible set W = {w : y(i)(wTx(i)− b) ≥
1−ζi ∀i = 1 : m} is usually unbounded in order to ensure con-
vergence we need to impose some additional box constraints
wl ≤ w ≤ wu, for appropriately chosen (wl,wu). Moreover,
conditional gradient needs to compute the solution of a linear
program at each iteration whose overall complexity is of order
O((m + n)3) [10], and requires knowledge of the entire
feasible set W. Therefore, it is not adequate in applications
where the data arrives in streams. Next, we present a gradient
descent algorithm with random projections that uses at each
iteration only one set Wi = {w : y(i)(wTx(i) − b) ≥ 1 − ζi}
from the intersection W = ∩mi=1Wi, see [8] for a detailed
description:

Gradient with Random Projections

Given any w0, for k ≥ 0 do:
1. Compute gradient step:
G(wk) = wk − γk∇f(wk)

2. Choose randomly an index i ∈ [1 : m]
3. Compute the new iterate:

wk+1 = ΠWi(G(wk)),

where the stepsize γk can be chosen constant or variable such
as γk = γ0/k. Recall that ΠW denotes the projection operator
onto the set W. The convergence behavior of this scheme is
given next:

Theorem 3.2: [8] Let f be strongly convex function with
constant σf and with gradient Lipschit with constant Lf .
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Moreover, assume that the stepsize is chosen as γk = γ0
k .

Then, there exists a constant M(Lf , σf ,w∗) > 0 such that the
iterates of gradient descent algorithm with random projections
satisfy the following convergence rate in expectation:

E
[
‖wk − w∗‖2

]
≤ M(Lf , σf ,w∗)

k
.

We used the notation w∗ for an optimal solution of the
primal SVM problem. Note that the previous theorem requires
strongly convex objective function, therefore for SVM we
usually consider the l2 regularization formulation (5), for some
sufficiently small C0. Moreover, note that the computation
of the gradient step G(wk) is numerically cheap and the
projection ΠWi

onto the half-space Wi can be computed in
closed form in O(m+ n) operations, which is much cheaper
than the overall complexity O((m+n)3) for solving the linear
programm corresponding to one iteration of the conditional
gradient scheme.

B. Dual First Order Methods

In the dual formulation of SVM given in (7), the feasible set
is simple, that is we can project onto the simplex ∆ = {α :
yTα = 0, α ≥ 0} in O(m logm) flops [4]. Thus, one possible
candidate for solving this problem (7) is the full dual projected
gradient method, see [10] for details:

Full Dual Gradient

Given α0 ∈ ∆, for k ≥ 0 do:
1. Compute gradient step:
Gφ(αk) = αk − γk∇φ(αk)

2. Compute the new iterate:
αk+1 = Π∆(Gφ(αk)),

where the stepsize γk can be chosen constant or using line
search. The convergence behavior of this scheme is given in
the next theorem:

Theorem 3.3: [10] Let φ be strongly convex function
with constant σφ and with gradient Lipschit with constant
Lφ. Moreover, assume that the stepsize is chosen constant
γk = 1/Lφ. Then, the iterates of the full dual projected
gradient algorithm satisfy:

‖αk − α∗‖2 ≤
(

1− 2σφ
σφ + Lφ

)
‖α0 − α∗‖2.

Here α∗ denotes an optimal solution of (7). Note that for the
dual SVM problem (7) the Hessian KC = K + 1/CIm is
positive definite, since K � 0, and thus σφ = λmin(KC) and
Lφ = λmax(KC). Moreover, since the projections step can
be computed efficiently in O(m logm) operations, the main
computational bottleneck of the full dual gradient scheme is
the computation of the full gradient ∇φ(α) = KCα − e,
usually done in O(m2) operations. Here e denotes the vector
with all entries 1. However, we show below that applying a
random coordinate descent scheme to dual SVM problem (7)
we can update the iterates in at most O(m) operations (since
K is a dense matrix). Indeed, the random coordinate descent
algorithm has the following steps, see [9] for more details:

Random Coordinate Descent

Given α0 ∈ ∆, for k ≥ 0 do:
1. Choose uniformly at random (i, j) ∈ [1 : m]
2. Solve the subproblem:

(s∗i , s
∗
j ) = arg min

(si,sj)≥0,yisi+yjsj=0
Φij(si, sj)

2. Compute the new iterate:
αk+1 = αk + s∗i ei + s∗jej ,

where Φij(si, sj) = ∇iφ(αk)si + Lij/2s
2
i + ∇jφ(αk)sj +

Lij/2s
2
j , ∇iφ denotes the ith component of ∇φ, i.e. ∇iφ =

eTi ∇φ, and Lij is the Lipschitz constant of the partial gradient
(∇iφ,∇jφ). The convergence of this scheme is given next:

Theorem 3.4: [10] Let φ be strongly convex function with
constant σφ and with gradient Lipschitz with constant Lφ.
Then, there exists a constant τ = τ(σφ, Lφ,m) ∈ (0, 1) such
that the iterates of the random coordinate descent algorithm
satisfy in expectation:

E [φ(αk)]− f∗ ≤ τk(φ(α0)− f∗).

When the random coordinate descent algorithm is applied on
the dual SVM problem (7), we have that

∇iφ(α) = KC(i, :)α− 1,

usually computed in O(m) flops. Moreover, for this appli-
cation Lij = KC(i, i) + KC(j, j). Finally, the subproblem
can be computed in closed form in O(1) operations, thus the
complexity per iteration of this scheme is O(m), that is m
times cheaper than for the full dual gradient. In the next section
we present numerical evidence for assessing the practical
convergence behavior of the four algorithms described above
on the driver fatigue monitoring system.

IV. DRIVER FATIGUE MONITORING SYSTEM USING
SUPPORT VECTOR MACHINES

We consider as main application the driver fatigue monitoring
system. Driver fatigue is one of the leading causes of traffic
accidents. In this section we briefly present the fatigue moni-
toring system which exploits the driver’s facial expression to
detect and alert fatigued drivers [17], [19], [20]. The presented
approach adopts the Viola-Jones classifier [12] to detect the
driver’s facial features. The correlation coefficient template
matching method is then applied to derive the state of each
feature on a frame by frame basis. An SVM classifier is finally
integrated within the system to classify the facial appearance
as either fatigued or otherwise. Using this simple and cheap
implementation, the overall system achieved an accuracy of
prediction of about 87%.
In Fig.2 we depict the flowchart of the proposed system whose
process steps are similar to [20]. The first step of the strategy
implies a face detection. Once the searching area is restrained,
the eyes detection phase begins. If any of this steps fails then
a new frame is acquired and the detection process is repeated.
Otherwise, if the detection is successful then we apply the
SVM classifier to obtain the state of the eye. Our contribution
is achieved at this step, that is we implement and compare the
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Fig. 2. Flowchart of the proposed system.

four optimization algorithms described in the previous section
on the corresponding primal and dual SVM problems using
real data from [16] to obtain the eye classifiers. After the first
successful detection, the eyes tracking is triggered. If the track
fails then we go back to the detection phase. The environment
in which the application was developed is Matlab R2016.

A. The Detection Phase

In the detection step we use two types of detectors: one for
the face and a second for the eyes. In our implementation
we applied the Viola-Jones algorithm with the HAAR-like
features that are fast to calculate due to the integral images
concept, see [12] for more details. However, the simple HAAR
classifiers are usually weak, so the Viola-Jones approach
develops a stronger classifier by organizing the previous ones
in a cascade structure. This method is precise, but the main
disadvantage is that the process is long. Matlab is equipped
with an image processing toolbox that includes face and eyes
detectors as described above. They are applied on a gray
image, so first a change of color spectrum is needed as the
frame acquired is a RGB image. The face detector is initialized
with the command:

v i s i o n . C a s c a d e O b j e c t D e t e c t o r
( ’ FrontalFaceCART ’ )

and the detector is called with

bbox = s t e p ( d e t e c t o r , Image )

and returns a bound box with the following information
(x,y,width,height). For the eye detectors the command for the
initialization has the region of interest option activated, i.e for
the left eye:

v i s i o n . C a s c a d e O b j e c t D e t e c t o r
( ’ Le f tEye ’ , ’ UseROI ’ , t r u e )

Practically, the bound box procured by the face detector will
be the frontier of the new area of search instead of the entire
image. The eyes detectors are called with:

bbox = s t e p ( d e t e c t o r , Image , ROI )

Even if the detection is fast, repeating this action for each
frame will slow the processing phase, thus the need of a tracker
is imperative.

B. The Tracking Phase

The solution selected for the feature tracker is based on the
Kanade-Lucas-Tomasi work [13], [14], and it is named the
KLT tracker. For this method to work we first need to establish
the type of features that will be used in the process. The
extraction of the characteristics was based on the fact that the
pupil of the eye is a circle. Thus, we choose for this task the
Circle Hough Transformation (CHT) [15]. The CHT is applied
in the eye zone that it already detected and the points of this
specific geometric figure are recorded taking into account the
whole frame. Then, again Matlab has a command that resolves
the CHT:

i m f i n d c i r c l e s ( Image , rVa l / rRange )

To estimate the radius of the pupil we use the information
from the eye detector and the human geometric face aspects.
After the extraction of the features, the points of interest are
used in the KLT tracker. The tracking method uses the detected
features for monitoring. Each frame is analyzed based on the
previous one. The aim of this approach is to align a template
(the previous frame), denoted with T (p), to an input image
I(p), where p is the vector that has the image coordinates
(x, y). For a better alignment between the template and the
input image, we employ a minimization of the differences,
which are obtained with the help of the l2 norm:∑

p

‖I(W (p; d))− T (p)‖2,

where W (·, ·) is the operator for translation. The algorithm is
designed to eliminate the points for which the distance from
a frame to another are bigger than a certain threshold and to
go back to detection if there are less than e.g. three points to
follow. This approach is faster and has a low computational
cost, but it looses points when occlusion take place.

C. The Classification Phase

After identifying the eyes, next step is to classify them as
closed or open and based on this information to calculate the
fatigue indicator. In order to train and test the classifiers we
used a database of real images of size 24x24 pixels from [16].
We select a total of 2.400 images from which half were for
the closed eye state and the other half for the open eye state.
For the training process we use 800 images (one-third of the
total number of images from the database), half for the closed
eye and half for the open eye. After extracting the features
from the training data (144 or 900) using the procedures
described above, the linear SVM classifiers were obtained with
the primal and dual first order optimization methods described
in the previous sections. The SVM classifiers were then tested
on the remaining images. The classifiers are binary, thus have
only the two states: open (coded as 1), and closed (coded as
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Features Gradient Random Proj. Conditional Gradient Random Coordinate Dual Gradient
obj iter time obj iter time obj iter time obj iter time

144 20.17 127 54 20.02 392 304 19.93 23 5 19.94 93 27
900 11.05 471 173 10.98 697 789 10.87 61 11 10.89 518 58

TABLE I
COMPARISON OF THE FOUR ALGORITHMS ON PRIMAL OR DUAL SVM.

Fig. 3. Database samples used in learning.

−1). For each eye (left and right) we create a separate detector
and classifier, but we have not observed substantial differences
in the classification accuracy of the left/right eye. The fatigue
indicator takes into account the eye status as follows: if the
eye status is closed for 6 frames consecutively, then an alarm
is triggered as it is considered that the driver is asleep; if an
alternation is detected (blink), then we consider that the person
is tired and a break is suggested.
Using the simple and cheap first order optimization algorithms
previously presented for solving either the primal or dual
formulation of the linear SVM problem derived from the 800
images, the overall system achieves an accuracy of about 87%
for both eyes when we consider 900 features and of about 83%
for 144 features. Note that while the differences between the
four algorithms is significant regarding the objective function,
CPU time and number of iterations (see Table 1), their
classification accuracy is not that different, in general between
86% and 88% for 900 features. Moreover, the reader should
note that in the table we report the full number of iterations for
all the methods, that is for gradient based on random projection
we divided the total number of iteration by n + m and for
random coordinate descent scheme by m/2. From the table we
also observe a very good behavior for the random coordinate
descent scheme, both in terms of CPU time and objective
function over the other three first order methods. Therefore,
numerical evidence supports the effectiveness of these primal
and dual first order methods based on random choice of the
sets or of the coordinates in real-world problems.

V. CONCLUSIONS

We have presented a comparative study of four gradient
type methods for solving primal or dual SVM problems for
classification. Our preliminary numerical simulations on SVM

classification for automatic detection of driver fatigue have
showed superior numerical performance of those methods
based on random choice of the sets or of the coordinates
compared to full projections or gradients, respectively. In our
future work we plan to investigate the effectiveness of such
first order methods in other real-world problems as well.

REFERENCES

[1] D. Blatt and A.O. Hero, Energy based sensor network source local-
ization via projection onto convex sets, IEEE Transactions on Signal
Processing, 54(9): 3614–3619, 2006.

[2] M. Jaggi, Revisiting Frank-Wolfe: projection-free sparse convex opti-
mization, International Conference on Machine Learning, 2013.

[3] A. Juditsky and A. Nemirovski, First order methods for nonsmooth
convex large-scale optimization (I): general purpose methods, Opti-
mization for Machine Learning, 121-148, 2011.

[4] K. Kiwiel, On linear-time algorithms for the continuous quadratic
Knapsack problem, J. Optimization Theory Applications, 2007.

[5] E. Moulines and F.R. Bach, Non-asymptotic analysis of stochastic
approximation algorithms for machine learning, In Advances in Neural
Information Processing Systems, 2011.

[6] I. Necoara, V. Nedelcu and I. Dumitrache, Parallel and distributed
optimization methods for estimation and control in networks, Journal
of Process Control, 21(5): 756–766, 2011.

[7] A. Patrascu and I. Necoara, Nonasymptotic convergence of stochastic
proximal point algorithms for constrained convex optimization, Journal
of Machine Learning Research, 2018.

[8] I. Necoara, Random algorithms for convex minimization over intersec-
tion of simple sets, Technical Report, UPB, 2017.

[9] I. Necoara and A. Patrascu, A random coordinate descent algorithm
for optimization problems with composite objective function and linear
coupled constraints, Computational Optim. and Applications, 57(2):
307–337, 2014.

[10] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Kluwer, Boston, 2004.

[11] S. Theodoridis, Machine Learaning: A Bayesian and Optimization
Perspective, Academic Press, 2015.

[12] V. Paul and M. Jones, Robust real-time face detection, International
Journal of Computer Vision, 57(2): 137–154, 2004.

[13] B. Lucas and T. Kanade, An iterative image registration technique with
an application to stereo vision, Proceedings of Artificial Intelligence
Conference, 674–679, 1981.

[14] C. Tomasi and T. Kanade, Detection and tracking of point features,
International Journal of Computer Vision, 1991.

[15] R. Duda and P. Hart, Use of the Hough transformation to detect lines
and curves in pictures, Communications of the ACM, 15(1): 11–15,
1972.

[16] F. Song, X. Tan, X. Liu and S. Chen, Eyes closeness detection from
still images with multi-scale histograms of principal oriented gradients,
Pattern Recognition, 47(9): 2825–2838, 2014.

[17] A. Colic, O. Marques and B. Furht, Driver Drowsiness Detection:
Systems and Solutions, Springer, 2014.

[18] H. Singh, J. Bhatia and J. Kaur, Eye tracking based driver fatigue
monitoring and warning system, India International Conference on
Power Electronics, 2011.

[19] W. Horng, C. Chen, Y. Chang and C. Fan, Driver fatigue detection
based on eye tracking and dynamic template matching, IEEE Confer-
ence on Networking, Sensing and Control, 7–12, 2004.

[20] V. Dahiphale, R. Sathyanarayana and M. Mukhedkar, Computer Vision
System for Driver Fatigue Detection, International Journal of Advanced
Research in Electronics and Communication Engineering, 4(9), 2015.

[21] V. Vapnik, Statistical learning theory, John Wiley, 1998.

570


